Exceeding natural resonance frequency limit of monodisperse Fe3O4 nanoparticles via superparamagnetic relaxation
نویسندگان
چکیده
Magnetic nanoparticles have attracted much research interest in the past decades due to their potential applications in microwave devices. Here, we adopted a novel technique to tune cut-off frequency exceeding the natural resonance frequency limit of monodisperse Fe3O4 nanoparticles via superparamagnetic relaxation. We observed that the cut-off frequency can be enhanced from 5.3 GHz for Fe3O4 to 6.9 GHz forFe3O4@SiO2 core-shell structure superparamagnetic nanoparticles, which are much higher than the natural resonance frequency of 1.3 GHz for Fe3O4 bulk material. This finding not only provides us a new approach to enhance the resonance frequency beyond the Snoek's limit, but also extend the application for superparamagnetic nanoparticles to microwave devices.
منابع مشابه
Local spin dynamics of iron oxide magnetic nanoparticles dispersed in different solvents with variable size and shape: A 1H NMR study.
Colloidal magnetic nanoparticles (MNPs) based on a nearly monodisperse iron oxide core and capped by oleic acid have been used as model systems for investigating the superparamagnetic spin dynamics by means of magnetometry measurements and nuclear magnetic resonance (1H NMR) relaxometry. The key magnetic properties (saturation magnetization, coercive field, and frequency dependent "blocking" te...
متن کاملEffect of Superparamagnetic Fe 3 O 4 Nanoparticles on Schottky Barriers of Graphene
We demonstrated the effect of superparamagnetic Fe3O4 nanoparticles on Schottky barriers of graphene, in which the Fe3O4 nanoparticles were fabricated by a hydrothermal method and the single-layer graphene sheets were mechanically exfoliated from Kish graphite. The Fe3O4 nanoparticles were superparamagnetic with the saturation magnetic moment of about 32 emu/g at room temperature. We have found...
متن کاملNMR studies into colloidal stability and magnetic order in fatty acid stabilised aqueous magnetic fluidsw
We report the physico-chemical characterisation of fatty acid stabilised aqueous magnetic fluids, which are ideal systems for studying the influence of nanoparticle aggregation on the emergent magnetic resonance properties of the suspensions. Stable colloids of superparamagnetic magnetite, Fe3O4, nanoparticle clusters in the 80 to 100 nm size range were produced by in situ nanoparticle growth a...
متن کاملMagnetic resonance imaging of glioma with novel APTS-coated superparamagnetic iron oxide nanoparticles
We report in vitro and in vivo magnetic resonance (MR) imaging of C6 glioma cells with a novel acetylated 3-aminopropyltrimethoxysilane (APTS)-coated iron oxide nanoparticles (Fe3O4 NPs). In the present study, APTS-coated Fe3O4 NPs were formed via a one-step hydrothermal approach and then chemically modified with acetic anhydride to generate surface charge-neutralized NPs. Prussian blue stainin...
متن کاملMagneto-dielectric properties of polymer– Fe3O4 nanocomposites
The aim of this research is to elucidate the size effect of magnetic nanoparticles on the resultant magneto-dielectric properties of polymer nanocomposites at radio frequencies. The block copolymer of [styrene-b-ethylene/butylene-b-styrene] (SEBS) was utilized as a matrix for the templating of magnetic nanoparticles. Surfactant-modified iron oxide (Fe3O4) nanoparticles of various sizes were suc...
متن کامل